Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A particle of charge equal to that of an electron, \( -e \), and mass \( 208 \) times the mass of electron (called \( \mu-\operatorname{meson} \) ) moves in a circular orbit around a nucleus of charge \( +3 \mathrm{e} \). (Take the mass of the nucleus to be infinite). Assuming that Bohr model of the atom is applicable to this system: Derive an expression for the radius of the \( \mathrm{n}^{\text {th }} \) Bohr orbit
PhysicsAtomic PhysicsJEE Main
Options:
  • A \( \frac{\varepsilon_{0} \mathrm{n}^{2} \mathrm{~h}^{2}}{208 \pi \mathrm{m}_{\mathrm{e}} \mathrm{e}^{2}} \)
  • B \( \frac{\varepsilon_{0} \mathrm{n}^{2} \mathrm{~h}^{2}}{3 \pi \mathrm{m}_{\mathrm{e}} \mathrm{e}^{2}} \)
  • C \( \frac{\varepsilon_{0} \mathrm{n}^{2} \mathrm{~h}^{2}}{624 \pi \mathrm{m}_{\mathrm{e}} \mathrm{e}^{2}} \)
  • D \( \frac{\varepsilon_{0} \mathrm{n}^{2} \mathrm{~h}^{2}}{64 \pi \mathrm{m}_{\mathrm{e}} \mathrm{e}^{2}} \)
Solution:
1156 Upvotes Verified Answer
The correct answer is: \( \frac{\varepsilon_{0} \mathrm{n}^{2} \mathrm{~h}^{2}}{208 \pi \mathrm{m}_{\mathrm{e}} \mathrm{e}^{2}} \)
Electrostatic force will provide required centripetal force for circular motion in bohr orbit.
rn=n2h2ϵ0 π me2 Z
Put Z=3;m=208 me

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.