Search any question & find its solution
Question:
Answered & Verified by Expert
A particle of charge $\mathrm{q}$ and mass $\mathrm{m}$ moves in a circular orbit of radius $r$ with angular speed $\omega$. The ratio of the magnitude of its magnetic moment to that of its angular momentum depends on
Options:
Solution:
2449 Upvotes
Verified Answer
The correct answer is:
$q$ and $m$
The angular momentum $\mathrm{L}$ of the particle is given by
$L=m r^{2} \omega$ where $\omega=2 \pi n$
$\therefore$ Frequency $n=\frac{\omega}{2 \pi}$;
Further $i=q \times n=\frac{\omega q}{2 \pi}$
Magnetic moment, $M=i A=\frac{\omega q}{2 \pi} \times \pi r^{2}$;
$\therefore M=\frac{\omega q r^{2}}{2}$
So, $\frac{M}{L}=\frac{\omega q r^{2}}{2 m r^{2} \omega}=\frac{q}{2 m}$
$L=m r^{2} \omega$ where $\omega=2 \pi n$
$\therefore$ Frequency $n=\frac{\omega}{2 \pi}$;
Further $i=q \times n=\frac{\omega q}{2 \pi}$
Magnetic moment, $M=i A=\frac{\omega q}{2 \pi} \times \pi r^{2}$;
$\therefore M=\frac{\omega q r^{2}}{2}$
So, $\frac{M}{L}=\frac{\omega q r^{2}}{2 m r^{2} \omega}=\frac{q}{2 m}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.