Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A particle of mass $0.4 \mathrm{~kg}$ executes simple harmonic motion of amplitude $0.4 \mathrm{~m}$. When it passes through the mean position, its kinetic energy is $256 \times 10^{-3} \mathrm{~J}$. If the initial phase of the oscillation is $\pi / 4$, then the equation of its motion is
PhysicsOscillationsAP EAMCETAP EAMCET 2021 (25 Aug Shift 1)
Options:
  • A $x=0.4 \sin \left((0.4) t+\frac{\pi}{4}\right)$
  • B $x=02 \sin \left(2 \sqrt{2}+\left(\frac{\pi}{4}\right) t\right)$
  • C $x=0.8 \sin \left((2 \sqrt{2}) t+\frac{\pi}{2}\right)$
  • D $x=0.4 \sin \left((2 \sqrt{2}) t+\frac{\pi}{4}\right)$
Solution:
2550 Upvotes Verified Answer
The correct answer is: $x=0.4 \sin \left((2 \sqrt{2}) t+\frac{\pi}{4}\right)$
Given, mass of the particle, $m=0.4 \mathrm{~kg}$
Amplitude, $A=0.4 \mathrm{~m}$
Initial phase, $\phi=\frac{\pi}{4}$
Kinetic energy at mean position $\mathrm{KE}$
As,
$$
\begin{aligned}
& =256 \times 10^{-3} \mathrm{~J} \\
\mathrm{KE} & =\frac{1}{2} m \omega^2 A^2
\end{aligned}
$$
where, $\omega$ is angular frequency.
$$
\begin{array}{cc}
\Rightarrow & \frac{1}{2} m \omega^2 A^2=256 \times 10^{-3} \\
\Rightarrow & \frac{1}{2} \times 0.4 \times \omega^2 \times(0.4)^2=256 \times 10^{-3} \\
\Rightarrow & \omega^2=8 \\
\Rightarrow & \omega=2 \sqrt{2} \mathrm{rad} \mathrm{s}^{-1}
\end{array}
$$
Equation of simple harmonic motion is given by
$$
\begin{aligned}
x & =A \sin (\omega t+\phi) \\
& =0.4 \sin \left[(2 \sqrt{2}) t+\frac{\pi}{4}\right]
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.