Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A particle of mass $10 \mathrm{~g}$ is moving towards east with a velocity of $10 \mathrm{~ms}^{-1}$ and another particle of mass $15 \mathrm{~g}$ is moving towards north with a velocity of $5 \mathrm{~ms}^{-1}$. The magnitude of the velocity of the centre of mass of the system of the two particles is
PhysicsCenter of Mass Momentum and CollisionAP EAMCETAP EAMCET 2023 (18 May Shift 1)
Options:
  • A $5 \mathrm{~ms}^{-1}$
  • B $10 \mathrm{~ms}^{-1}$
  • C $15 \mathrm{~ms}^{-1}$
  • D $7.5 \mathrm{~ms}^{-1}$
Solution:
2242 Upvotes Verified Answer
The correct answer is: $5 \mathrm{~ms}^{-1}$
Mass, $\mathrm{m}_1=10 \mathrm{~g}=10 \times 10^{-3}=10^{-2} \mathrm{Kg}$
velocity, $\mathrm{v}_1=10 \mathrm{~m} / \mathrm{s}$
Mass of 2nd particle,
$M_2=15 \mathrm{~g}=15 \times 10^{-3} \mathrm{Kg}$
Velocity of IInd particle, $V_2=5 \mathrm{~m} / \mathrm{s}$


centre of mass makes $45^{\circ}$ angle with north and east side.
Hence velocity of centre of mass is given as:
$\begin{aligned} & V_{1 \mathrm{~m}}=\frac{\mathrm{m}_1 \mathrm{v}_1 \cos \theta_1+\mathrm{m}_2 \theta, \sin \theta_1}{\mathrm{~m}_1+\mathrm{m}_2} \\ & =\frac{10 \times 10 \times \cos 45+15 \times 5 \times \sin 45}{10+15} \\ & =\frac{1}{\sqrt{2}}\left[\frac{175}{25}\right]=\frac{7}{2}(\sqrt{2})=4.9 \mathrm{~m} / \mathrm{s} ; 5 \mathrm{~m} / \mathrm{s}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.