Search any question & find its solution
Question:
Answered & Verified by Expert
A particle of mass $4 M$ which is initially at rest explodes into three pieces of masses $M$, $M$ and $2 M$. The equal masses move along $X$ and $Y$-axes with velocities $4 \mathrm{~ms}^{-1}$ and $6 \mathrm{~ms}^{-1}$, respectively. The magnitude of the velocity of the heavier mass is
Options:
Solution:
2748 Upvotes
Verified Answer
The correct answer is:
$\sqrt{13} \mathrm{~ms}^{-1}$
Initial mass of particle $=4 M$
Initial velocity of particle $=0$.
After explosion into three pieces of masses $M, M$ and $2 M$ particle of equal masses move along $X$ and $Y$ axes with velocities $4 \mathrm{~m} / \mathrm{s}$ and $6 \mathrm{~m} / \mathrm{s}$, respectively. So, according to law of conservation of momentum mass $2 M$ particle will move in the direction shown in the figure.

Law of conservation of momentum, Momentum before collision $=$ Momentum after collision.
$$
\begin{array}{rlrl}
& & 4 M \times 0 & =2 M \mathbf{v}+M \mathbf{v}_x+M \mathbf{v}_y \\
\Rightarrow & & -2 M \mathbf{v} & =M\left(\mathbf{v}_x+\mathbf{v}_y\right) \\
\Rightarrow & & -2 \mathbf{v} & =4 \hat{\mathbf{i}}+6 \hat{\mathbf{j}} \Rightarrow \mathbf{v}=-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}} \\
\text { So, }|\mathbf{v}|=\sqrt{2^2+3^2}=\sqrt{4+9}=\sqrt{13} \mathrm{~ms}^{-1}
\end{array}
$$
Initial velocity of particle $=0$.
After explosion into three pieces of masses $M, M$ and $2 M$ particle of equal masses move along $X$ and $Y$ axes with velocities $4 \mathrm{~m} / \mathrm{s}$ and $6 \mathrm{~m} / \mathrm{s}$, respectively. So, according to law of conservation of momentum mass $2 M$ particle will move in the direction shown in the figure.

Law of conservation of momentum, Momentum before collision $=$ Momentum after collision.
$$
\begin{array}{rlrl}
& & 4 M \times 0 & =2 M \mathbf{v}+M \mathbf{v}_x+M \mathbf{v}_y \\
\Rightarrow & & -2 M \mathbf{v} & =M\left(\mathbf{v}_x+\mathbf{v}_y\right) \\
\Rightarrow & & -2 \mathbf{v} & =4 \hat{\mathbf{i}}+6 \hat{\mathbf{j}} \Rightarrow \mathbf{v}=-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}} \\
\text { So, }|\mathbf{v}|=\sqrt{2^2+3^2}=\sqrt{4+9}=\sqrt{13} \mathrm{~ms}^{-1}
\end{array}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.