Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A particle of mass $m$ is suspended from a ceiling through a string of length $L$. If the particle moves in a horizontal circle of radius $r$ as shown in the figure, then the speed of the particle is

PhysicsLaws of MotionAP EAMCETAP EAMCET 2016
Options:
  • A $r \sqrt{\frac{g}{\sqrt{L^2-r^2}}}$
  • B $g \sqrt{\frac{r}{\sqrt{L^2-r^2}}}$
  • C $r \sqrt{\frac{g}{\sqrt{L^2+r^2}}}$
  • D $g \sqrt{\frac{r}{\sqrt{L^2+r^2}}}$
Solution:
1101 Upvotes Verified Answer
The correct answer is: $r \sqrt{\frac{g}{\sqrt{L^2-r^2}}}$
From the diagram,


$\begin{aligned} & \frac{T \sin \theta}{T \cos \theta}=\frac{F_{\text {Centripetal }}}{\text { weight }}=\frac{m v^2}{r} \times \frac{1}{m g} \\ & \Rightarrow \tan \theta=\frac{v^2}{r g} \\ & \text { Also, } \tan \theta=\frac{t}{\sqrt{L^2-r^2}} \\ & \therefore \frac{v^2}{r g}=\frac{t}{\sqrt{L^2-r^2}} \\ & \text { or, } v=r \sqrt{\frac{g}{\sqrt{L^2-r^2}}}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.