Search any question & find its solution
Question:
Answered & Verified by Expert
A particle of mass 'm' moves along a circle of radius 'r' with constant tangential
acceleration. If kinetic energy 'E' of the particle becomes three times by the end of
third revolution after beginning of the motion then the magnitude of tangential
acceleration is
Options:
acceleration. If kinetic energy 'E' of the particle becomes three times by the end of
third revolution after beginning of the motion then the magnitude of tangential
acceleration is
Solution:
1287 Upvotes
Verified Answer
The correct answer is:
$\frac{\mathrm{E}}{6 \pi \mathrm{rm}}$
$\mathrm{E}_{1}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{mr}^{2} \omega_{1}^{2}$
$E_{2}=\frac{3}{2} m r^{2} \omega_{1}^{2}$
$\frac{E_{2}}{E_{1}}=3 \quad \therefore E_{2}=3 E_{1}$
$\frac{1}{2} \mathrm{mr}^{2} \omega^{2}=3 \frac{1}{2} \mathrm{~m} \omega_{0}^{2} \mathrm{r}^{2}$
$\omega^{2}=3 \omega_{0}^{2}$
$\frac{1}{2} m \omega_{0}^{2} r^{2}=E$
$\omega_{0}^{2}=\frac{2 \mathrm{E}}{\mathrm{mr}^{2}}$
$\omega^{2}=\omega_{0}^{2}+2 \alpha \theta$
$3 \omega_{0}^{2}=\omega_{0}^{2}+2 \alpha(3.2 \pi)$
$2 \omega_{0}^{2}=12 \alpha \pi$
$\alpha=\frac{\omega_{0}^{2}}{6 \pi}=\frac{2 \mathrm{E}}{\mathrm{mr}^{2}} \times \frac{1}{6 \pi}=\frac{\mathrm{E}}{3 \pi \mathrm{mr}^{2}}$
But $\mathrm{a}=r \alpha=r \times \frac{\mathrm{E}}{3 \pi \mathrm{mr}^{2}}=\frac{\mathrm{E}}{3 \pi \mathrm{mr}}$
$E_{2}=\frac{3}{2} m r^{2} \omega_{1}^{2}$
$\frac{E_{2}}{E_{1}}=3 \quad \therefore E_{2}=3 E_{1}$
$\frac{1}{2} \mathrm{mr}^{2} \omega^{2}=3 \frac{1}{2} \mathrm{~m} \omega_{0}^{2} \mathrm{r}^{2}$
$\omega^{2}=3 \omega_{0}^{2}$
$\frac{1}{2} m \omega_{0}^{2} r^{2}=E$
$\omega_{0}^{2}=\frac{2 \mathrm{E}}{\mathrm{mr}^{2}}$
$\omega^{2}=\omega_{0}^{2}+2 \alpha \theta$
$3 \omega_{0}^{2}=\omega_{0}^{2}+2 \alpha(3.2 \pi)$
$2 \omega_{0}^{2}=12 \alpha \pi$
$\alpha=\frac{\omega_{0}^{2}}{6 \pi}=\frac{2 \mathrm{E}}{\mathrm{mr}^{2}} \times \frac{1}{6 \pi}=\frac{\mathrm{E}}{3 \pi \mathrm{mr}^{2}}$
But $\mathrm{a}=r \alpha=r \times \frac{\mathrm{E}}{3 \pi \mathrm{mr}^{2}}=\frac{\mathrm{E}}{3 \pi \mathrm{mr}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.