Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A particle of mass 'm' moves along a circle of radius 'r' with constant tangential
acceleration. If kinetic energy 'E' of the particle becomes three times by the end of
third revolution after beginning of the motion then the magnitude of tangential
acceleration is
PhysicsMotion In Two DimensionsMHT CETMHT CET 2020 (20 Oct Shift 1)
Options:
  • A $\frac{\mathrm{E}}{12 \pi \mathrm{rm}}$
  • B $\frac{\mathrm{E}}{3 \pi \mathrm{rm}}$
  • C $\frac{\mathrm{E}}{6 \pi \mathrm{rm}}$
  • D $\frac{\mathrm{E}}{24 \pi \mathrm{rm}}$
Solution:
1287 Upvotes Verified Answer
The correct answer is: $\frac{\mathrm{E}}{6 \pi \mathrm{rm}}$
$\mathrm{E}_{1}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{mr}^{2} \omega_{1}^{2}$
$E_{2}=\frac{3}{2} m r^{2} \omega_{1}^{2}$
$\frac{E_{2}}{E_{1}}=3 \quad \therefore E_{2}=3 E_{1}$
$\frac{1}{2} \mathrm{mr}^{2} \omega^{2}=3 \frac{1}{2} \mathrm{~m} \omega_{0}^{2} \mathrm{r}^{2}$
$\omega^{2}=3 \omega_{0}^{2}$
$\frac{1}{2} m \omega_{0}^{2} r^{2}=E$
$\omega_{0}^{2}=\frac{2 \mathrm{E}}{\mathrm{mr}^{2}}$
$\omega^{2}=\omega_{0}^{2}+2 \alpha \theta$
$3 \omega_{0}^{2}=\omega_{0}^{2}+2 \alpha(3.2 \pi)$
$2 \omega_{0}^{2}=12 \alpha \pi$
$\alpha=\frac{\omega_{0}^{2}}{6 \pi}=\frac{2 \mathrm{E}}{\mathrm{mr}^{2}} \times \frac{1}{6 \pi}=\frac{\mathrm{E}}{3 \pi \mathrm{mr}^{2}}$
But $\mathrm{a}=r \alpha=r \times \frac{\mathrm{E}}{3 \pi \mathrm{mr}^{2}}=\frac{\mathrm{E}}{3 \pi \mathrm{mr}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.