Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A particle performing SHM has time period $\frac{2 \pi}{\sqrt{3}}$ and path length $4 \mathrm{~cm}$. The displacement from mean position at which acceleration is equal to velocity is
PhysicsOscillationsMHT CETMHT CET 2009
Options:
  • A $0 \mathrm{~cm}$
  • B $0.5 \mathrm{~cm}$
  • C $1 \mathrm{am}$
  • D $1.5 \mathrm{~cm}$
Solution:
2672 Upvotes Verified Answer
The correct answer is: $1 \mathrm{am}$
Velocity $v=\omega \sqrt{A^{2}-x^{2}}$
and acceleration $=\omega^{2} x$ Given, $\omega \sqrt{A^{2}-x^{2}}=\omega^{2} x$
or $\sqrt{A^{2}-x^{2}}=\omega x$
Given,
$$
T=\frac{2 \pi}{\sqrt{3}}
$$
and
$$
\omega=\frac{2 \pi}{T}=\sqrt{3}
$$
Substituting the value of $\omega$ in Eq (i), we get $\sqrt{A^{2}-x^{2}}=\sqrt{3} x$
$$
\Rightarrow \quad A=2 x
$$
$$
\begin{aligned}
\text { As amplitude } &=\frac{\text { path length }}{2}=2 \mathrm{~cm} \\
\Rightarrow \quad x=1 \mathrm{~cm}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.