Search any question & find its solution
Question:
Answered & Verified by Expert
A particle performing uniform circular motion has angular frequency is doubled \& its kinetic energy halved, then the new angular momentum is
Options:
Solution:
2756 Upvotes
Verified Answer
The correct answer is:
$\frac{\mathrm{L}}{4}$
$\frac{\mathrm{L}}{4}$
Angular momentum $\propto \frac{1}{\text { Angular frequency }} \propto$ Kinetic energy $\Rightarrow \vec{L}=\frac{\mathrm{K} . \mathrm{E} .}{\mathrm{w}}$
$\frac{\mathrm{L}_1}{\mathrm{~L}_2}=\left(\frac{\mathrm{K} . \mathrm{E}_1}{\mathrm{w}_1}\right) \times \frac{\mathrm{w}_2}{\mathrm{KE}_2}=4 \Rightarrow \mathrm{L}_2=\frac{\mathrm{L}}{4}$
$\frac{\mathrm{L}_1}{\mathrm{~L}_2}=\left(\frac{\mathrm{K} . \mathrm{E}_1}{\mathrm{w}_1}\right) \times \frac{\mathrm{w}_2}{\mathrm{KE}_2}=4 \Rightarrow \mathrm{L}_2=\frac{\mathrm{L}}{4}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.