Search any question & find its solution
Question:
Answered & Verified by Expert
A particle performing uniform circular motion of radius $\frac{\pi}{2} \mathrm{~m}$ makes ' $\mathrm{x}$ ' revolutions in time ' $\mathrm{t}$ '. Its tangential velocity is
Options:
Solution:
1711 Upvotes
Verified Answer
The correct answer is:
$\frac{\pi^2 x}{t}$
$\begin{aligned} & \text { Circumference of the circle }=2 \pi \mathrm{r} \\ & \therefore \quad \text { Tangential velocity }=\frac{\text { Distance Travelled }}{\text { Time }} \\ & \qquad \frac{\pi^2 \times x}{\mathrm{t}} \\ & =\frac{\pi^2 x}{\mathrm{t}}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.