Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A particle rotates in horizontal circle of radius 'R' in a conical funnel, with speed 'V'.
The inner surface of the funnel is smooth. The height of the plane of the circle from
the vertex of the funnel is $(\mathrm{g}=$ acceleration due to gravity $)$
PhysicsMotion In Two DimensionsMHT CETMHT CET 2020 (14 Oct Shift 2)
Options:
  • A $\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}$
  • B $\frac{\mathrm{V}}{\mathrm{g}}$
  • C $\frac{\mathrm{V}^{2}}{\mathrm{~g}}$
  • D $\frac{V}{2 g}$
Solution:
2982 Upvotes Verified Answer
The correct answer is: $\frac{\mathrm{V}^{2}}{\mathrm{~g}}$
$\mathrm{mg}=\mathrm{R} \sin \theta$
$\frac{\mathrm{mv}^{2}}{\mathrm{r}}=\mathrm{R} \cos \theta$
$\tan \theta=\frac{\mathrm{rg}}{\mathrm{v}^{2}}$
$\tan \theta=\frac{\mathrm{r}}{\mathrm{h}}$
$\mathrm{h}=\frac{\mathrm{v}^{2}}{\mathrm{~g}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.