Search any question & find its solution
Question:
Answered & Verified by Expert
A particle slides on surface of a fixed smooth sphere starting from topmost point. The angle rotated by the radius through the particle, when it leaves contact with the sphere, is
Options:
Solution:
2823 Upvotes
Verified Answer
The correct answer is:
$\theta=\cos ^{-1}\left(\frac{2}{3}\right)$
See the diagram

Let the velocity be $v$ when the body leaves the surface. From free body diagram,
$\frac{m v^2}{R}=m g \cos \theta$.
$\Rightarrow \quad v^2=R g \cos \theta$ ...(i)
Again from work energy principle, change in $\mathrm{KE}=$ work done
$\Rightarrow \frac{1}{2} m v^2-0=m g[R-R \cos \theta]$
$v^2=2 g R(1-\cos \theta)$ ...(ii)
From Eqs. (i) and (ii)
$\begin{aligned} R g \cos \theta & =2 g R(1-\cos \theta) \\ 3 g R \cos \theta & =2 g R \\ \Rightarrow \quad \cos \theta & =\frac{2}{3} \Rightarrow \theta=\cos ^{-1}\left(\frac{2}{3}\right)\end{aligned}$

Let the velocity be $v$ when the body leaves the surface. From free body diagram,
$\frac{m v^2}{R}=m g \cos \theta$.
$\Rightarrow \quad v^2=R g \cos \theta$ ...(i)
Again from work energy principle, change in $\mathrm{KE}=$ work done
$\Rightarrow \frac{1}{2} m v^2-0=m g[R-R \cos \theta]$
$v^2=2 g R(1-\cos \theta)$ ...(ii)
From Eqs. (i) and (ii)
$\begin{aligned} R g \cos \theta & =2 g R(1-\cos \theta) \\ 3 g R \cos \theta & =2 g R \\ \Rightarrow \quad \cos \theta & =\frac{2}{3} \Rightarrow \theta=\cos ^{-1}\left(\frac{2}{3}\right)\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.