Search any question & find its solution
Question:
Answered & Verified by Expert
A passenger sitting in a train A moving at $90 \mathrm{~km} /$ $h$ observes another train B moving in the opposite direction for $8 \mathrm{~s}$. If the velocity of the train B is $54 \mathrm{~km} / \mathrm{h}$, then length of train B is :
Options:
Solution:
1190 Upvotes
Verified Answer
The correct answer is:
$320 \mathrm{~m}$
Velocity of train A
\(\mathrm{V}_{\mathrm{A}}=90 \frac{\mathrm{km}}{\mathrm{hr}}=90 \times \frac{5}{18}=25 \mathrm{~m} / \mathrm{s}\)
Velocity of train B
\(\mathrm{V}_{\mathrm{B}}=54 \frac{\mathrm{km}}{\mathrm{hr}}=54 \times \frac{5}{18}=15 \mathrm{~m} / \mathrm{s}\)
Velocity of train B w.r.t. train
\(\begin{aligned}
A=\vec{V}_B & -\vec{V}_A \\
& =15-(-25) \mathrm{m} / \mathrm{s} \\
& =40 \mathrm{~m} / \mathrm{s}
\end{aligned}\)
Time of crossing \(=\frac{\text { length of train }}{\text { relative velocity }}\)
\((8)=\frac{\ell}{40}\)
\(\ell=8 \times 40=320\) meter.
\(\mathrm{V}_{\mathrm{A}}=90 \frac{\mathrm{km}}{\mathrm{hr}}=90 \times \frac{5}{18}=25 \mathrm{~m} / \mathrm{s}\)
Velocity of train B
\(\mathrm{V}_{\mathrm{B}}=54 \frac{\mathrm{km}}{\mathrm{hr}}=54 \times \frac{5}{18}=15 \mathrm{~m} / \mathrm{s}\)
Velocity of train B w.r.t. train
\(\begin{aligned}
A=\vec{V}_B & -\vec{V}_A \\
& =15-(-25) \mathrm{m} / \mathrm{s} \\
& =40 \mathrm{~m} / \mathrm{s}
\end{aligned}\)
Time of crossing \(=\frac{\text { length of train }}{\text { relative velocity }}\)
\((8)=\frac{\ell}{40}\)
\(\ell=8 \times 40=320\) meter.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.