Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A pendulum is oscillating with frequency ' $n$ ' on the surface of the earth. It is taken to a depth $\frac{R}{2}$ below the surface of earth. New frequency of oscillation at depth $\frac{\mathrm{R}}{2}$ is
[ $\mathrm{R}$ is the radius of earth]
PhysicsGravitationMHT CETMHT CET 2021 (21 Sep Shift 1)
Options:
  • A $\frac{\mathrm{n}}{3}$
  • B $\frac{\mathrm{n}}{\sqrt{2}}$
  • C $2 \mathrm{n}$
  • D $\frac{\mathrm{n}}{2}$
Solution:
2486 Upvotes Verified Answer
The correct answer is: $\frac{\mathrm{n}}{\sqrt{2}}$
Frequency of a simple pendulum is given by
$$
\begin{aligned}
& \mathrm{n}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{g}}{\ell}} \\
& \therefore \frac{\mathrm{n}^{\prime}}{\mathrm{n}}=\sqrt{\frac{\mathrm{g}^{\prime}}{\mathrm{g}}} \\
& \mathrm{g}^{\prime}=\mathrm{g}\left(1-\frac{\mathrm{d}}{\mathrm{R}}\right)=\mathrm{g}\left(1-\frac{1}{2}\right)=\frac{\mathrm{g}}{2} \\
& \therefore \mathrm{n}^{\prime}=\frac{\mathrm{n}}{\sqrt{2}}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.