Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A plane $\mathrm{E}_{1}$ makes intercepts $1,-3,4$ on the co-ordinate axes. The equation of a plane
parallel to plane $\mathrm{E}_{1}$ and passing through $(2,6,-8)$ is
MathematicsThree Dimensional GeometryMHT CETMHT CET 2020 (13 Oct Shift 1)
Options:
  • A $\frac{x}{2}-\frac{y}{3}+\frac{z}{4}+3=0$
  • B $\frac{x}{1}-\frac{y}{3}+\frac{z}{4}+12=0$
  • C $\frac{x}{1}-\frac{y}{3}+\frac{z}{4}+2=0$
  • D $\frac{x}{3}-\frac{y}{6}+\frac{z}{2}+\frac{13}{3}=0$
Solution:
2573 Upvotes Verified Answer
The correct answer is: $\frac{x}{1}-\frac{y}{3}+\frac{z}{4}+2=0$
A plane $\mathrm{E}_{1}$ makes intercepts $1,-3,4$ on the coordinate axes
Equation of plane is $\frac{x}{1}+\frac{y}{-3}+\frac{z}{4}=1 \Rightarrow 12 x-4 y+3 z=12$
d.r.s. are $12,-4,3$
Since required plane is parallel to given plane, normal vector $\bar{n}$ to required plane is
$\overline{\mathrm{n}}=12 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
The vector equation of the plane passing through $(2,6,-8)$ is
$\overline{\mathrm{r}} \cdot \overline{\mathrm{n}}=\overline{\mathrm{a}} \cdot \overline{\mathrm{n}}$, where $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-8 \hat{\mathrm{k}}$
$\bar{a} \cdot \bar{n}=(12)(2)-(4)(6)+(3)(-8)=24-24-24=-24$
$\therefore$ Required equation is $\overline{\mathrm{r}} \cdot(12 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=-24$
$\therefore$ Cartesion form of equation is $12 x-4 y+3 z+24=0$
$\therefore \frac{x}{1}-\frac{y}{3}+\frac{z}{4}+2=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.