Search any question & find its solution
Question:
Answered & Verified by Expert
A plot of In \(\mathrm{k}\) against \(\frac{1}{\mathrm{~T}}\) (abscissa) is expected to be a straight line with intercept on ordinate axis equal to
Options:
Solution:
2206 Upvotes
Verified Answer
The correct answer is:
\(\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}}\)
Hints: \(\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \operatorname{InK}\)
or, \(\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}=-\mathrm{RT} \operatorname{InK}\)

or, \(\operatorname{InK}=\frac{-\Delta \mathrm{H}^{\circ}}{\mathrm{RT}}+\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}}\) comparing with \(\mathrm{y}=\mathrm{m} \cdot \mathrm{x}+\mathrm{c}\)
\(\therefore \mathrm{y}\) intercept is \(\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}}\)
or, \(\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}=-\mathrm{RT} \operatorname{InK}\)

or, \(\operatorname{InK}=\frac{-\Delta \mathrm{H}^{\circ}}{\mathrm{RT}}+\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}}\) comparing with \(\mathrm{y}=\mathrm{m} \cdot \mathrm{x}+\mathrm{c}\)
\(\therefore \mathrm{y}\) intercept is \(\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}}\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.