Search any question & find its solution
Question:
Answered & Verified by Expert
A prism of refractive index $\mu$ and angle $A$ is placed in the minimum deviation position. If the angle of minimum deviation is $A$, then the value of $A$ in terms of $\mu$ is :
Options:
Solution:
2084 Upvotes
Verified Answer
The correct answer is:
$2 \cos ^{-1}\left(\frac{\mu}{2}\right)$
Refractive index of material of prism
$\mu=\frac{\sin \left(\frac{A+\delta_m}{2}\right)}{\sin \frac{A}{2}}$
but $\quad \delta_m=A$
$\mu=\frac{\sin \frac{A+A}{2}}{\sin \frac{A}{2}}$
$\mu=\frac{\sin A}{\sin A / 2}$
$\mu=\frac{2 \sin A / 2 \cos A / 2}{\sin A / 2}$
$\cos \frac{A}{2}=\frac{\mu}{2}$
$\frac{A}{2}=\cos ^{-1}\left(\frac{\mu}{2}\right)$
$A=2 \cos ^{-1}\left(\frac{\mu}{2}\right)$
$\mu=\frac{\sin \left(\frac{A+\delta_m}{2}\right)}{\sin \frac{A}{2}}$
but $\quad \delta_m=A$
$\mu=\frac{\sin \frac{A+A}{2}}{\sin \frac{A}{2}}$
$\mu=\frac{\sin A}{\sin A / 2}$
$\mu=\frac{2 \sin A / 2 \cos A / 2}{\sin A / 2}$
$\cos \frac{A}{2}=\frac{\mu}{2}$
$\frac{A}{2}=\cos ^{-1}\left(\frac{\mu}{2}\right)$
$A=2 \cos ^{-1}\left(\frac{\mu}{2}\right)$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.