Search any question & find its solution
Question:
Answered & Verified by Expert
A proton and a deutron ( $q=+\mathrm{e}, m=2.0 \mathrm{u})$ having same kinetic energies enter a region of uniform magnetic field $\vec{B}$, moving perpendicular to $\vec{B}$. The ratio of the radius $r_d$ of deutron path to the radius $r_p$ of the proton path is:
Options:
Solution:
2632 Upvotes
Verified Answer
The correct answer is:
$\sqrt{2}: 1$
In uniform magnetic field,
$\mathrm{R}=\frac{\mathrm{m} \nu}{\mathrm{qB}}=\frac{\sqrt{2 \mathrm{~m}(\mathrm{~K} . \mathrm{E})}}{\mathrm{qB}}$
Since same K.E
$\begin{aligned}& \mathrm{R} \propto \frac{\sqrt{\mathrm{m}}}{\mathrm{q}} \\& \therefore \frac{\mathrm{R}_{\text {deutron }}}{\mathrm{R}_{\text {proton }}}=\sqrt{\frac{\mathrm{m}_{\mathrm{d}}}{\mathrm{m}_{\mathrm{p}}}} \times \frac{\mathrm{q}_{\mathrm{p}}}{\mathrm{q}_{\mathrm{d}}} \\& =\sqrt{2} \times 1 \\& \therefore \gamma_{\mathrm{d}}: \gamma_{\mathrm{p}}=\sqrt{2}: 1\end{aligned}$
$\mathrm{R}=\frac{\mathrm{m} \nu}{\mathrm{qB}}=\frac{\sqrt{2 \mathrm{~m}(\mathrm{~K} . \mathrm{E})}}{\mathrm{qB}}$
Since same K.E
$\begin{aligned}& \mathrm{R} \propto \frac{\sqrt{\mathrm{m}}}{\mathrm{q}} \\& \therefore \frac{\mathrm{R}_{\text {deutron }}}{\mathrm{R}_{\text {proton }}}=\sqrt{\frac{\mathrm{m}_{\mathrm{d}}}{\mathrm{m}_{\mathrm{p}}}} \times \frac{\mathrm{q}_{\mathrm{p}}}{\mathrm{q}_{\mathrm{d}}} \\& =\sqrt{2} \times 1 \\& \therefore \gamma_{\mathrm{d}}: \gamma_{\mathrm{p}}=\sqrt{2}: 1\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.