Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A proton and an $\alpha$-particle are accelerated from rest to the same energy. The de-Broglie wavelengths $\lambda_p$ and $\lambda_\alpha$ are in the ratio
PhysicsDual Nature of MatterNEETNEET 2019 (Odisha)
Options:
  • A $2: 1$
  • B $1: 1$
  • C $\sqrt{2}: 1$
  • D $4: 1$
Solution:
2749 Upvotes Verified Answer
The correct answer is: $2: 1$
The de-Broglie wavelength associated with a charged particle is given by
$$
\lambda=\frac{\mathrm{h}}{\mathrm{p}}
$$
where, $\mathrm{h}=$ planck's constant and $\mathrm{p}=$ momentum $=\sqrt{2 \mathrm{mKE}}$ (here, KE is the kinetic energy of the charged particle)
$$
\Rightarrow \quad \lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mKE}}}
$$
For proton and $\alpha$-particle, the wavelengths are respectively given as,
$$
\begin{aligned}
\lambda_{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{KE}_{\mathrm{p}}}} \text { and } \lambda_\alpha=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_\alpha \mathrm{KE}_\alpha}} \\
\therefore \quad \quad \frac{\lambda_{\mathrm{p}}}{\lambda_\alpha}=\frac{\sqrt{2 \mathrm{~m}_\alpha \mathrm{KE}_\alpha}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{KE}_{\mathrm{P}}}}
\end{aligned}
$$

Here, $\mathrm{KE}_\alpha=\mathrm{KE}_{\mathrm{p}}$ and $\mathrm{m}_\alpha=4 \mathrm{~m}_{\mathrm{p}}$
Substituting these above mentioned relations in Eq. (i), we get
$$
\Rightarrow \quad \frac{\lambda_{\mathrm{P}}}{\lambda_\alpha}=\sqrt{\frac{4 \mathrm{~m}_{\mathrm{P}}}{\mathrm{m}_{\mathrm{p}}}}=\frac{2}{1} \quad \text { or } \quad \lambda_{\mathrm{P}}: \lambda_\alpha=2: 1
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.