Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A random variable $\mathrm{X}$ has the following probability distribution
\begin{array}{|r|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{x} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \mathrm{P}(\mathrm{X}=\mathrm{x}) & \mathrm{K} & 2 \mathrm{~K} & 3 \mathrm{~K} & 4 \mathrm{~K} & 4 \mathrm{~K} & 3 \mathrm{~K} & 2 \mathrm{~K} & \mathrm{~K} & \mathrm{~K} \\
\hline
\end{array}
Then $\mathrm{P}(3 < \mathrm{x} \leq 6)=$
MathematicsProbabilityMHT CETMHT CET 2021 (23 Sep Shift 2)
Options:
  • A $\frac{3}{7}$
  • B $\frac{4}{7}$
  • C $\frac{13}{21}$
  • D $\frac{8}{21}$
Solution:
1928 Upvotes Verified Answer
The correct answer is: $\frac{3}{7}$
We know that
$$
\begin{aligned}
& \mathrm{k}+2 \mathrm{k}+3 \mathrm{k}+4 \mathrm{k}+4 \mathrm{k}+3 \mathrm{k}+2 \mathrm{k}+\mathrm{k}+\mathrm{k}=1 \Rightarrow 21 \mathrm{k}=1 \\
& \Rightarrow \mathrm{k}=\frac{1}{21}
\end{aligned}
$$
When $x=4, P=4 k=\frac{4}{21}$, When $x=5, P=3 k=\frac{3}{21}$,
When $\mathrm{x}=6, \mathrm{P}=2 \mathrm{k}=\frac{2}{21}$
$$
\therefore \mathrm{P}(3 < \mathrm{x} \leq 6)==\frac{4+3+2}{21}=\frac{9}{21}=\frac{3}{7}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.