Search any question & find its solution
Question:
Answered & Verified by Expert
A random variable $X$ has the probability distribution:
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline \mathrm{X}: & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \mathrm{p}(\mathrm{X}): & 0.15 & 0.23 & 0.12 & 0.10 & 0.20 & 0.08 & 0.07 & 0.05 \\
\hline
\end{array}
For the events $E=\{X$ is a prime number $\}$ and $F=\{X < 4\}$, the probability $P(E \cup F)$ is
Options:
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline \mathrm{X}: & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \mathrm{p}(\mathrm{X}): & 0.15 & 0.23 & 0.12 & 0.10 & 0.20 & 0.08 & 0.07 & 0.05 \\
\hline
\end{array}
For the events $E=\{X$ is a prime number $\}$ and $F=\{X < 4\}$, the probability $P(E \cup F)$ is
Solution:
2247 Upvotes
Verified Answer
The correct answer is:
$0.77$
$0.77$
$P(E \cup F)=P(E)+P(F)-P(E \cap F)=0.62+0.50-0.35=0.77$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.