Search any question & find its solution
Question:
Answered & Verified by Expert
A rectangle \(A B C D\) has its side parallel to the line \(y=2 x\) and vertices \(A, B, D\) are on lines \(y=1, x=1\) and \(x=-1\) respectively. The coordinate of \(C\) can be
Options:
Solution:
1161 Upvotes
Verified Answer
The correct answers are:
None of these
Hint: Case I

line \(y=2 x\ldots(1)\)
\(A D\) parallel to \(y=2 x\)
\(\Rightarrow \mathrm{M}_{\mathrm{AD}}=2 ~\&~ \mathrm{M}_{\mathrm{AB}}=-\frac{1}{2}\)
for \(a=3\)
\(A(3,1), B(1,2), C(-3,-6), D(-1,-7)\)
\(\begin{aligned} & \text { for } a=-3 \\ & C(3,3), A(-3,1), B(1,-1), D(-1,5)\end{aligned}\)
Case II AD perpendicular to line (1)
\(\Rightarrow M_{A D}=\frac{1}{2}, M_{A B}=2 \Rightarrow b=3-2 a \Rightarrow d=\frac{a+1}{2}\)
for \(a=3, C(-3,-2)\)
for \(a=-3, C(3,7)\)
\({ }^*\) In both cases if abscissa of \(C: 3\) or -3
then co-ordinates of \(C\) can be \((3,3)\) or \((3,7)\) or \((-3,-6)\) or \((-3,-2)\)

line \(y=2 x\ldots(1)\)
\(A D\) parallel to \(y=2 x\)
\(\Rightarrow \mathrm{M}_{\mathrm{AD}}=2 ~\&~ \mathrm{M}_{\mathrm{AB}}=-\frac{1}{2}\)
for \(a=3\)
\(A(3,1), B(1,2), C(-3,-6), D(-1,-7)\)

\(\begin{aligned} & \text { for } a=-3 \\ & C(3,3), A(-3,1), B(1,-1), D(-1,5)\end{aligned}\)

Case II AD perpendicular to line (1)
\(\Rightarrow M_{A D}=\frac{1}{2}, M_{A B}=2 \Rightarrow b=3-2 a \Rightarrow d=\frac{a+1}{2}\)

for \(a=3, C(-3,-2)\)

for \(a=-3, C(3,7)\)

\({ }^*\) In both cases if abscissa of \(C: 3\) or -3
then co-ordinates of \(C\) can be \((3,3)\) or \((3,7)\) or \((-3,-6)\) or \((-3,-2)\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.