Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A rectangular region of dimensions $\mathrm{w} \times l(\mathrm{w}< < l)$ has a constant magnetic field into the plane of the paper as shown. On one side the region is bounded by a screen. On the other side positive ions of mass $\mathrm{m}$ and charge $\mathrm{q}$ are accelerated from rest and towards the screen by a parallel plate capacitor at constant potential difference $\mathrm{V} < 0$, and come out through a small hole in the upper plate. Which one of the following statements is correct regarding the charge on the ions that hit the screen?
PhysicsMagnetic Effects of CurrentKVPYKVPY 2017 (5 Nov SB/SX)
Options:
  • A Ions with $\mathrm{q}>\frac{2|\mathrm{v}| \mathrm{m}}{\mathrm{B}^{2} \mathrm{w}^{2}}$ will hit the screen.
  • B Ions with $\mathrm{q} < \frac{2|\mathrm{v}| \mathrm{m}}{\mathrm{B}^{2} \mathrm{w}^{2}}$ will hit the screen.
  • C All ions will hit the screen.
  • D Only ions with $q=\frac{2|v| m}{B^{2} w^{2}}$ will hit the screen.
Solution:
2142 Upvotes Verified Answer
The correct answer is: Ions with $\mathrm{q} < \frac{2|\mathrm{v}| \mathrm{m}}{\mathrm{B}^{2} \mathrm{w}^{2}}$ will hit the screen.


Ions will hit if $\mathrm{r}>\mathrm{W}$.
$\begin{array}{l}
\mathrm{w}=\mathrm{q} \Delta \mathrm{V} \\
\frac{1}{2} \mathrm{mv}^{2}=\mathrm{q} \mathrm{V} \\
\mathrm{v}=\sqrt{\frac{2 \mathrm{qV}}{\mathrm{m}}} \\
\frac{\mathrm{mv}^{2}}{\mathrm{r}}=\mathrm{qvB}
\end{array}$
$\begin{aligned} \Rightarrow \mathrm{r} &=\frac{\mathrm{mv}}{\mathrm{qB}}=\frac{\mathrm{m}}{\mathrm{qB}} \sqrt{\frac{2 \mathrm{q} \mathrm{V}}{\mathrm{m}}} \\ \mathrm{r}=\frac{1}{\mathrm{~B}} \sqrt{\frac{2 \mathrm{mV}}{\mathrm{q}}} \\ & \frac{1}{\mathrm{~B}} \sqrt{\frac{2 \mathrm{mV}}{\mathrm{q}}}>\mathrm{w} \\ & \frac{2 \mathrm{mV}}{\mathrm{q}}>\mathrm{w}^{2} \mathrm{~B}^{2} \\ \Rightarrow \mathrm{q} & < \frac{2 \mathrm{mV}}{\mathrm{w}^{2} \mathrm{~B}^{2}} \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.