Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A resistor $R=300 \Omega$ and a capacitor $C=25 \mu \mathrm{F}$ are connected in series with a $50 \mathrm{~V}, \frac{50}{\pi} \mathrm{Hz}$ AC source. The average power dissipated in the circuit is
PhysicsAlternating CurrentTS EAMCETTS EAMCET 2021 (06 Aug Shift 2)
Options:
  • A 0.5 W
  • B 1.0 W
  • C 2.0 W
  • D 1.5 W
Solution:
2718 Upvotes Verified Answer
The correct answer is: 1.5 W
$\begin{aligned}
& \text{Given,} R=300 \Omega, C=25 \mu \mathrm{F}=25 \times 10^{-6} \mathrm{~F} \\
& V=50 \mathrm{~V}
\end{aligned}$
Frequency of AC source, $v=\frac{50}{\pi} \mathrm{Hz}$
$$
\begin{array}{cc}
\therefore & 2 \pi \nu=\omega \\
\Rightarrow & \omega=2 \pi \times \frac{50}{\pi}=100 \mathrm{rad} / \mathrm{s}
\end{array}
$$
$\therefore$ AC voltage, $V=50 \cos \omega \mathrm{t}=50 \cos (100 t)$
$\therefore$ rms voltage, $V_{\mathrm{rms}}=\frac{V_0}{\sqrt{2}}=\frac{50}{\sqrt{2}}=25 \sqrt{2} \mathrm{~V}$
$\therefore$ Impedance of the $R C$-circuit is
$$
\begin{aligned}
Z & =\sqrt{R^2+X_C^2}=\sqrt{R^2+\left(\frac{1}{\omega C}\right)^2} \\
\therefore \quad Z & =\sqrt{300^2+\left(\frac{1}{100 \times 25 \times 10^{-6}}\right)^2} \\
& =\sqrt{300^2+400^2} \\
\Rightarrow \quad Z & =500 \Omega
\end{aligned}
$$
$\therefore$ Current through the circuit, $I_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}}{Z}$
$$
=\frac{25 \sqrt{2}}{500}=\frac{\sqrt{2}}{20} \mathrm{~A}
$$
$\therefore$ Average power dissipated through the circuit is
$$
\begin{aligned}
< P> & =V_{\text {rms }} \times I_{\text {rms }} \times \cos \phi \\
& =25 \sqrt{2} \times \frac{\sqrt{2}}{20} \times \frac{R}{Z} \\
& =\frac{50}{20} \times \frac{300}{500}=1.5 \mathrm{~W}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.