Search any question & find its solution
Question:
Answered & Verified by Expert
A sample of gas at temperature $T$ is adiabatically expanded to double its volume. Adiabatic constant for the gas is $\gamma=3 / 2$. The work done by the gas in the process is:
$(\mu=1 \mathrm{~mole})$
Options:
$(\mu=1 \mathrm{~mole})$
Solution:
2962 Upvotes
Verified Answer
The correct answer is:
$R T[2-\sqrt{2}]$
$\begin{aligned} & \mathrm{W}=\frac{\mathrm{nR} \Delta \mathrm{T}}{1-\gamma} \\ & \mathrm{TV}^{\gamma-1}=\text { constan } \mathrm{t}=\mathrm{T}_{\mathrm{f}}(2 \mathrm{~V})^{\gamma-1} \\ & \mathrm{~T}_{\mathrm{f}}=\mathrm{T}\left(\frac{1}{2}\right)^{1 / 2}=\frac{\mathrm{T}}{\sqrt{2}} \\ & \mathrm{~W}=\frac{\mathrm{R}\left(\frac{\mathrm{T}}{\sqrt{2}}-\mathrm{T}\right)}{1-\frac{3}{2}}=2 \mathrm{RT} \frac{(\sqrt{2}-1)}{\sqrt{2}} \\ & =\mathrm{RT}(2-\sqrt{2})\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.