Search any question & find its solution
Question:
Answered & Verified by Expert
A segment of wire vibrates with a fundamental frequency of $450 \mathrm{~Hz}$ under a tension of $9 \mathrm{~kg} \mathrm{wt}$. Then tension at which the fundamental frequency of the same wire becomes $900 \mathrm{~Hz}$ is
Options:
Solution:
1461 Upvotes
Verified Answer
The correct answer is:
$36 \mathrm{~kg}-\mathrm{wt}$
Fundamental frequency of wire
$\begin{array}{rlrl}f & =\frac{1}{2 \pi} \sqrt{\frac{T}{m}} \\ \text { or } & f & \propto \sqrt{T} \\ \text { or } & \frac{f_2}{f_1} & =\sqrt{\frac{T_2}{T_1}} \\ \text { or } & \frac{900}{450} & =\sqrt{\frac{T_2}{9}} \\ \text { or } & T_2 & =4 \times 9=36 \mathrm{~kg}-\mathrm{wt}\end{array}$
$\begin{array}{rlrl}f & =\frac{1}{2 \pi} \sqrt{\frac{T}{m}} \\ \text { or } & f & \propto \sqrt{T} \\ \text { or } & \frac{f_2}{f_1} & =\sqrt{\frac{T_2}{T_1}} \\ \text { or } & \frac{900}{450} & =\sqrt{\frac{T_2}{9}} \\ \text { or } & T_2 & =4 \times 9=36 \mathrm{~kg}-\mathrm{wt}\end{array}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.