Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A sinusoidal voltage of peak value $300 \mathrm{~V}$ and an angular frequency $\omega=400 \mathrm{rads}^{-1}$ is applied to series $L-C-R$ circuit, in which $R=3 \Omega$, $L=20 \mathrm{mH}$ and $C=625 \mu \mathrm{F}$. The peak current in the circuit is
PhysicsAlternating CurrentCOMEDKCOMEDK 2014
Options:
  • A $30 \sqrt{2} \mathrm{~A}$
  • B $60 \mathrm{~A}$
  • C $100 \mathrm{~A} \quad$
  • D $60 \sqrt{2} \mathrm{~A}$
Solution:
1584 Upvotes Verified Answer
The correct answer is: $60 \mathrm{~A}$
Given, $V_{m}=300 \mathrm{~V}, \omega=400 \mathrm{rads}^{-1}$
$$
R=3 \Omega, L=20 \mathrm{mH}=20 \times 10^{-3} \mathrm{H}
$$
and $C=625 \mu \mathrm{F}=625 \times 10^{-6} \mathrm{~F}$
Impedance of the circuit,
$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$
Here,
$$
X_{L}=\omega L=400 \times 20 \times 10^{-3}=8 \Omega
$$
and
$$
X_{C}=\frac{1}{\omega C}=\frac{1}{400 \times 625 \times 10^{-6}}=4 \Omega
$$
$$
Z=\sqrt{3^{2}+(8-4)^{2}}=\sqrt{25}=5 \Omega
$$
$\therefore$ Peak current, $I_{m}=\frac{V_{m}}{Z}=\frac{300}{5}=60 \mathrm{~A}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.