Search any question & find its solution
Question:
Answered & Verified by Expert
A solid having density of $9 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ forms face centred cubic crystals of edge length $200 \sqrt{2} \mathrm{pm} .$ What is the molar mass of the solid?
[Avogadro constant $\left.\approx 6 \times 10^{23} \mathrm{~mol}^{-1}, \pi \approx 3\right]$
Options:
[Avogadro constant $\left.\approx 6 \times 10^{23} \mathrm{~mol}^{-1}, \pi \approx 3\right]$
Solution:
1209 Upvotes
Verified Answer
The correct answer is:
$0.0305 \mathrm{~kg} \mathrm{~mol}^{-1}$
Density $=\frac{Z \times M}{N_{A} \times a^{3}}$
$9 \times 10^{3}=\frac{4 \times \mathrm{M}}{\left(200 \times \sqrt{2} \times 10^{-12}\right)^{3} 6 \times 10^{23}}$
$9 \times 10^{3}=\frac{4 \times \mathrm{M}}{\left(200 \times \sqrt{2} \times 10^{-12}\right)^{3} 6 \times 10^{23}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.