Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A solid sphere of mass $M$ and radius $R$ is attached to a spring of negligible mass kept on a horizontal plane such that it can roll without slipping. The sphere is made to execute SHM by stretching through a distance and released, then the time period of such oscillation is $(\mathrm{K}=$ spring constant $)$
PhysicsOscillationsAP EAMCETAP EAMCET 2022 (08 Jul Shift 1)
Options:
  • A $2 \pi \sqrt{\frac{3 \mathrm{M}}{2 \mathrm{~K}}}$
  • B $2 \pi \sqrt{\frac{5 \mathrm{~K}}{7 \mathrm{M}}}$
  • C $2 \pi \sqrt{\frac{7 \mathrm{M}}{5 \mathrm{~K}}}$
  • D $2 \pi \sqrt{\frac{3 \mathrm{~K}}{2 \mathrm{M}}}$
Solution:
1505 Upvotes Verified Answer
The correct answer is: $2 \pi \sqrt{\frac{7 \mathrm{M}}{5 \mathrm{~K}}}$
Total energy $=\mathrm{E}=\frac{1}{2} \mathrm{mV} V^2+\frac{1}{2} \mathrm{I} \omega^2+\frac{1}{2} \mathrm{Kx}^2$
$\begin{aligned} & =\frac{1}{2} \mathrm{mV}^2+\frac{1}{2}\left(\frac{2}{5} \mathrm{mR}^2\right) \frac{\mathrm{V}^2}{\mathrm{R}^2}+\frac{1}{2} \mathrm{Kx}^2 \\ & =\frac{7}{10} \mathrm{mV}^2+\frac{1}{2} \mathrm{Kx}^2\end{aligned}$
As $\mathrm{E}=$ constant
$\begin{aligned} & \Rightarrow \frac{\mathrm{dE}}{\mathrm{dt}}=0 \\ & \Rightarrow \frac{7}{10} \mathrm{~m}(2 \mathrm{~V}) \frac{\mathrm{dV}}{\mathrm{dt}}+\frac{1}{2} \mathrm{~K}(2 \mathrm{x}) \frac{\mathrm{dx}}{\mathrm{dt}}=0 \\ & \Rightarrow \frac{7}{5} \mathrm{mVa}+\mathrm{KVx}=0 \\ & \Rightarrow \frac{7}{5} \mathrm{ma}+\mathrm{Kx}=0 \\ & \Rightarrow \mathrm{a}=\frac{-5}{7} \frac{\mathrm{K}}{\mathrm{m}} \mathrm{x}\end{aligned}$
In SHM, $a=-\omega^2 x$
So, $\omega=\sqrt{\frac{5 \mathrm{~K}}{7 \mathrm{~m}}}$
Hence, $\mathrm{T}=2 \pi \sqrt{\frac{7 \mathrm{~m}}{5 \mathrm{~K}}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.