Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A solid sphere of radius $r_1=1 \mathrm{~cm}$ carries charge distributed uniformly over it with density $\rho_1=-3 \mathrm{C} / \mathrm{cm}^3$. It is surrounded by a concentric spherical shell of radius $r_2=2 \mathrm{~cm}$ carrying uniform charge density $\rho_2=\frac{1}{2} \mathrm{C} / \mathrm{cm}^2$. If $E_d$ denotes the magnitude of the electric field at distance $d$ from the common centre of the spheres, then
PhysicsElectrostaticsTS EAMCETTS EAMCET 2018 (05 May Shift 1)
Options:
  • A $E_d=\frac{1}{3 \varepsilon_0 d^2}, d \leq 1 \mathrm{~cm}$
  • B $E_d=\frac{1}{\varepsilon_0 d^2}, d \leq 1 \mathrm{~cm}$
  • C $E_d=\frac{d}{3 \varepsilon_0}, d \leq 1 \mathrm{~cm}$
  • D $E_d=\frac{d}{\varepsilon_0}, d \leq 1 \mathrm{~cm}$
Solution:
2884 Upvotes Verified Answer
The correct answer is: $E_d=\frac{d}{\varepsilon_0}, d \leq 1 \mathrm{~cm}$


Electric field at a point inside inner sphere is only due to charge enclosed.

We use Gauss' law to get,
$$
E=\left(\frac{q}{4 \pi \varepsilon_0 R^3}\right) r=\frac{\rho_R}{3 \varepsilon_0}
$$

Here,
$$
\rho=-3\left(\frac{\mathrm{C}}{\mathrm{cm}^3}\right)
$$

So,
$$
E=\frac{-d}{\varepsilon_0} \text { or }|\mathbf{E}|=\frac{d}{\varepsilon_0}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.