Search any question & find its solution
Question:
Answered & Verified by Expert
A solid spherical ball and a hollow spherical ball of two different materials of densities $\rho_{1}$ and $\rho_{2}$ respectively have same outer radii and same mass. What will be the ratio, the moment of inertia (about an axis passing through the centre) of the hollow sphere to that of the solid sphere?
Options:
Solution:
2780 Upvotes
Verified Answer
The correct answer is:
$\frac{\rho_{2}}{\rho_{1}}\left[1-\left(1-\frac{\rho_{1}}{\rho_{2}}\right)^{\frac{5}{3}}\right]$

$\therefore \quad M_{1}=\rho_{1} \frac{4}{3} \pi R^{3}$ and $M_{2}=\rho_{2} \frac{4}{3} \pi\left(R^{3}-r^{3}\right)$
$\therefore \quad \rho_{1} \frac{4}{3} \pi R^{3}=\rho_{2} \frac{4}{3} \pi\left(R^{3}-r^{3}\right)$
$\Rightarrow \quad \rho_{1} R^{3}=\rho_{2}\left(R^{3}-r^{3}\right)$
$\Rightarrow \quad \frac{\rho_{1}}{\rho_{2}}=1-\frac{r^{3}}{R^{3}}$
$\therefore \frac{r}{R}=\left(1-\frac{\rho_{1}}{\rho_{2}}\right)^{\frac{1}{3}}$
Moment of inertia, $\begin{aligned} \frac{I_{M}}{I_{S}} &=\frac{\frac{2}{5} M_{2}\left[\frac{R^{5}-r^{3}}{R^{3}-r^{3}}\right]}{\frac{2}{5} M_{1} R^{2}} \\ &=\frac{\rho_{2} \frac{4}{3} \pi\left(R^{3}-r^{3}\right)\left[\frac{R^{5}-r^{5}}{\left(R^{3}-r^{3}\right)}\right]}{\rho_{1} \frac{4}{3} \pi R^{3} R^{2}} \\ &=\frac{\rho_{2}}{\rho_{1}}\left[\frac{R^{5}-r^{5}}{R^{5}}\right]=\frac{\rho_{2}}{\rho_{1}}\left[1-\left(\frac{r}{R}\right)^{3}\right] \end{aligned}$
$\therefore \quad \frac{I_{H}}{I_{s}}=\frac{\rho_{2}}{\rho_{1}}\left[1-\left(1-\frac{\rho_{1}}{\rho_{2}}\right)^{\frac{5}{3}}\right]$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.