Search any question & find its solution
Question:
Answered & Verified by Expert
A sonometer wire resonates with a given tuning fork forming standing wave with 5 antinodes between two bridges when mass of $9 \mathrm{~kg}$ is suspended from the wire. When mass 'm' is suspended from the wire, with same fork and same length between two bridges 3 antinodes are formed. Mass $\mathrm{M}$ is
Options:
Solution:
1010 Upvotes
Verified Answer
The correct answer is:
$25 \mathrm{Kg}$
$\mathrm{n}=\frac{\mathrm{P}_{1}}{2 \ell} \sqrt{\frac{\mathrm{T}}{\mathrm{m}_{1}}}=\frac{\mathrm{P}_{2}}{2 \ell} \sqrt{\frac{\mathrm{I}}{\mathrm{m}_{2}}}$
$\therefore \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\sqrt{\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}}=\sqrt{\frac{\mathrm{m}}{9}}=\frac{\sqrt{\mathrm{m}}}{3}$
$\therefore \frac{5}{3}=\frac{\sqrt{\mathrm{m}}}{3} \quad \therefore \mathrm{m}=25 \mathrm{~kg}$
$\therefore \sqrt{\mathrm{m}}=5 \quad$
$\therefore \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\sqrt{\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}}=\sqrt{\frac{\mathrm{m}}{9}}=\frac{\sqrt{\mathrm{m}}}{3}$
$\therefore \frac{5}{3}=\frac{\sqrt{\mathrm{m}}}{3} \quad \therefore \mathrm{m}=25 \mathrm{~kg}$
$\therefore \sqrt{\mathrm{m}}=5 \quad$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.