Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A sonometer wire under suitable tension having specific gravity ' $\varrho^{\prime}$, vibrates with frequency 'n' in air. If the load is completely immersed in water the frequency of vibration of wire will become
PhysicsWaves and SoundMHT CETMHT CET 2020 (16 Oct Shift 2)
Options:
  • A $\left[\frac{0-1}{n \varrho}\right]^{\frac{1}{2}}$
  • B $n\left[\frac{\varrho}{0-1}\right]^{\frac{1}{2}}$
  • C $\left[\frac{n \varrho}{0-1}\right]^{\frac{1}{2}}$
  • D $n\left[\frac{0-1}{\varrho}\right]^{\frac{1}{2}}$
Solution:
2580 Upvotes Verified Answer
The correct answer is: $n\left[\frac{0-1}{\varrho}\right]^{\frac{1}{2}}$
$(\mathrm{C})$
$\mathrm{T}_{1}=\mathrm{mg}=\mathrm{v} \rho \mathrm{g}$
$\mathrm{T}_{2}=\mathrm{v}(\rho-\sigma) \mathrm{g} \quad \sigma=1$ for water
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{vpg}}{\mathrm{v}(\rho-1) \mathrm{g}}=\frac{\rho}{\rho-1}$
$\therefore \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\sqrt{\frac{\rho}{\rho-1}} \quad \therefore \mathrm{n}_{2}=\mathrm{n}_{1} \sqrt{\frac{\rho-1}{\rho}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.