Search any question & find its solution
Question:
Answered & Verified by Expert
A sound source is moving towards a stationary listener with \(1 / 10\) th of the speed of sound. The ratio of apparent to real frequency is
Options:
Solution:
1359 Upvotes
Verified Answer
The correct answer is:
\(\frac{10}{9}\)
Speed of sound source towards stationary observer
\(v_s=\frac{v}{10}\)
where, \(v\) is the speed of sound.
\(\therefore\) Apparent frequency, \(f^{\prime}=\left(\frac{v}{v-v_s}\right) f\)
\(\begin{aligned}
& =\left(\frac{v}{v-\frac{v}{10}}\right) f \\
\Rightarrow f^{\prime} & =\frac{10}{9} f \Rightarrow \frac{f^{\prime}}{f}=\frac{10}{9}
\end{aligned}\)
\(v_s=\frac{v}{10}\)
where, \(v\) is the speed of sound.
\(\therefore\) Apparent frequency, \(f^{\prime}=\left(\frac{v}{v-v_s}\right) f\)
\(\begin{aligned}
& =\left(\frac{v}{v-\frac{v}{10}}\right) f \\
\Rightarrow f^{\prime} & =\frac{10}{9} f \Rightarrow \frac{f^{\prime}}{f}=\frac{10}{9}
\end{aligned}\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.