Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A sound wave passing through an ideal gas at NTP produces a pressure change of 0.001 dyne $/ \mathrm{cm}^2$ during adiabatic compression. The corresponding change in temperature $(\gamma=1.5$ for the gas and atmospheric pressure is $1.013 \times 10^6$ dyne $/ \mathrm{cm}^2$ ) is
PhysicsThermodynamicsAP EAMCETAP EAMCET 2012
Options:
  • A $8.97 \times 10^{-4} \mathrm{~K}$
  • B $8.97 \times 10^{-6} \mathrm{~K}$
  • C $8.97 \times 10^{-8} \mathrm{~K}$
  • D $8.97 \times 10^{-9} \mathrm{~K}$
Solution:
2309 Upvotes Verified Answer
The correct answer is: $8.97 \times 10^{-8} \mathrm{~K}$
$T^\gamma p^{1-\gamma}=$ constant
or
$T^\gamma=p^{\gamma-1}$
$\begin{aligned} T & =p\left(\frac{\gamma-1}{\gamma}\right) \\ \therefore \quad \frac{\Delta T}{T} & =\frac{\gamma-1}{\gamma} \times \frac{\Delta p}{p} \\ \frac{\Delta T}{T} & =\left(\frac{1.5-1}{1.5}\right) \times \frac{0.001}{1.013 \times 10^6} \\ \Delta T & =8.98 \times 10^{-8} \mathrm{~K}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.