Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A sphere is rolling without slipping on a fixed horizontal plane surface. In the figure, $A$ is the point of contact. $B$ is the centre of the sphere and $C$ is its topmost point. Then,

PhysicsRotational MotionJEE AdvancedJEE Advanced 2009 (Paper 2)
Options:
  • A
    $\overrightarrow{\mathbf{v}}_C-\overrightarrow{\mathbf{v}}_A=2\left(\overrightarrow{\mathbf{v}}_B-\overrightarrow{\mathbf{v}}_C\right)$
  • B
    $\overrightarrow{\mathbf{v}}_C-\overrightarrow{\mathbf{v}}_B=\overrightarrow{\mathbf{v}}_B-\overrightarrow{\mathbf{v}}_A$
  • C
    $\left|\overrightarrow{\mathbf{v}}_C-\overrightarrow{\mathbf{v}}_A\right|=2\left|\overrightarrow{\mathbf{v}}_B-\overrightarrow{\mathbf{v}}_C\right|$
  • D
    $\left|\overrightarrow{\mathbf{v}}_C-\overrightarrow{\mathbf{v}}_A\right|=4\left|\overrightarrow{\mathbf{v}}_B\right|$
Solution:
2960 Upvotes Verified Answer
The correct answers are:
$\overrightarrow{\mathbf{v}}_C-\overrightarrow{\mathbf{v}}_B=\overrightarrow{\mathbf{v}}_B-\overrightarrow{\mathbf{v}}_A$
,
$\left|\overrightarrow{\mathbf{v}}_C-\overrightarrow{\mathbf{v}}_A\right|=2\left|\overrightarrow{\mathbf{v}}_B-\overrightarrow{\mathbf{v}}_C\right|$
$$
v_A=0, v_B=v \text { and } v_C=2 v
$$


Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.