Search any question & find its solution
Question:
Answered & Verified by Expert
A spherical conductor of diameter $6 \mathrm{~mm}$ is kept in uniform electric field of intensity $2 \times 10^7 \mathrm{~N} / \mathrm{C}$. The maximum charge on the conductor is
$\left[\frac{1}{4 \pi \varepsilon_0}=9 \times 10^9\right.$ SI units $]$
Options:
$\left[\frac{1}{4 \pi \varepsilon_0}=9 \times 10^9\right.$ SI units $]$
Solution:
1551 Upvotes
Verified Answer
The correct answer is:
$0.02 \mu C$
Maximum charge on the conductor is:
$\begin{aligned} & Q_{\text {max }}=4 \pi \varepsilon_0 R^2 E \\ & Q_{\text {max }}=\frac{1}{\left(9 \times \frac{10^9 \mathrm{Nm}^2}{C}\right)}\left(3 \times 10^{-3}\right)^2\left(2 \times 10^7 \frac{\mathrm{N}}{\mathrm{C}}\right) \\ & =2 \times 10^{-8}=0.02 \mu \mathrm{C}\end{aligned}$
$\begin{aligned} & Q_{\text {max }}=4 \pi \varepsilon_0 R^2 E \\ & Q_{\text {max }}=\frac{1}{\left(9 \times \frac{10^9 \mathrm{Nm}^2}{C}\right)}\left(3 \times 10^{-3}\right)^2\left(2 \times 10^7 \frac{\mathrm{N}}{\mathrm{C}}\right) \\ & =2 \times 10^{-8}=0.02 \mu \mathrm{C}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.