Search any question & find its solution
Question:
Answered & Verified by Expert

A spherical glass is attached to a rigid wall as shown in the figure. An observer located at point $\mathrm{O}$ is looking at a point $\mathrm{A}$ on the wall. The refractive index of the glass is 1.5 and that of air is 1.0. The distances are $\mathrm{OA}=8 \mathrm{~cm}, \mathrm{XA}=3$ $\mathrm{cm}$. If the radius of curvature of spherical glass surface is $R$ $=5 \mathrm{~cm}$, then the apparent distance of $\mathrm{A}$ from observer $\mathrm{O}$ is
Solution:
1094 Upvotes
Verified Answer
The correct answer is:
7.5 cm
At convex surface

$\begin{aligned} & \frac{\mu_2}{\mathrm{~V}}-\frac{\mu_1}{\mathrm{u}}=\frac{\mu_2-\mu_1}{\mathrm{R}} \\ & \Rightarrow \quad \frac{1}{\mathrm{~V}}-\frac{1.5}{-3}=\frac{1-1.5}{-5} \\ & \Rightarrow \quad \frac{1}{\mathrm{~V}}+0.5=+0.1 \\ & \Rightarrow \quad \frac{1}{\mathrm{~V}}=-0.4 \\ & \Rightarrow \quad \mathrm{V}=-2.5 \mathrm{~cm} \\ & \quad \text { So, OI }=5+2.5=7.5 \mathrm{~cm}\end{aligned}$

$\begin{aligned} & \frac{\mu_2}{\mathrm{~V}}-\frac{\mu_1}{\mathrm{u}}=\frac{\mu_2-\mu_1}{\mathrm{R}} \\ & \Rightarrow \quad \frac{1}{\mathrm{~V}}-\frac{1.5}{-3}=\frac{1-1.5}{-5} \\ & \Rightarrow \quad \frac{1}{\mathrm{~V}}+0.5=+0.1 \\ & \Rightarrow \quad \frac{1}{\mathrm{~V}}=-0.4 \\ & \Rightarrow \quad \mathrm{V}=-2.5 \mathrm{~cm} \\ & \quad \text { So, OI }=5+2.5=7.5 \mathrm{~cm}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.