Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A stationary uniform rod of mass $m=1 \mathrm{~kg}$ and length $I=2 \mathrm{~m}$ leans against a smooth vertical wall making an angle $\theta=45^{\circ}$ with rough horizontal floor. Find the frictional force that is exerted by the floor on the rod.

PhysicsRotational MotionJEE Main
Options:
  • A $5 \mathrm{~N}$
  • B $10 \mathrm{~N}$
  • C $20 \mathrm{~N}$
  • D $15 \mathrm{~N}$
Solution:
1604 Upvotes Verified Answer
The correct answer is: $5 \mathrm{~N}$
The correct option is A $5 \mathrm{~N}$
As the rod is stationary so the linear acceleration and angular acceleration of rod is zero.
$\begin{aligned}
& \text { i.e., } a_{\text {com }}=0 ; a=0 \\
& \mathrm{~N}_2=\mathrm{f} \\
& \left.\mathrm{N}_1=\mathrm{mg}\right\} \because \mathrm{a}_{\mathrm{com}}=0 \\
&
\end{aligned}$



Torque about any point of the rod should also be zero
$\begin{aligned}
& \therefore a=0 \\
& \tau_A=0 \Rightarrow m g \cos \theta \frac{1}{2}+f I \sin \theta=N_1 \cdot I \cos \theta \\
& \Rightarrow N_1 \cos \theta=f \sin \theta+\frac{m g \cos \theta}{2} \\
& \Rightarrow f=\frac{m g \cos }{2 \sin \theta} \frac{\theta \mathrm{mg} \cot \theta}{2} \\
& \Rightarrow f=\frac{1 \times 10 \times \cot 45^{\circ}}{2} \\
& \Rightarrow f=\frac{10}{2}=5 \mathrm{~N}
\end{aligned}$

So, option (a) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.