Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A steel rod has a radius of $10 \mathrm{~mm}$ and a length of $1 \mathrm{~m}$. A $80 \mathrm{kN}$ force stretches it along its length. If the Young's modulus of the rod is $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^2$, then the change in length is
PhysicsMechanical Properties of SolidsTS EAMCETTS EAMCET 2020 (11 Sep Shift 1)
Options:
  • A $\frac{2}{\pi} \mathrm{mm}$
  • B $\frac{4}{\pi} \mathrm{mm}$
  • C $\frac{3}{\pi} \mathrm{mm}$
  • D $1 \mathrm{~mm}$
Solution:
1034 Upvotes Verified Answer
The correct answer is: $\frac{4}{\pi} \mathrm{mm}$
We know that, Young's modulus is given by
$Y=\frac{\text { Stress }}{\text { Strain }}=\frac{F / a}{\Delta l / l}$ $\ldots$ (i)
or $\quad \Delta l=\frac{F}{a} \times \frac{l}{Y}$ $\ldots$ (ii)
Given, $\quad F=80 \mathrm{kN}=80 \times 10^3 \mathrm{~N}$
$l=1 \mathrm{~m}$
$a=\pi r^2=\pi \times\left(10 \times 10^{-3} \mathrm{~m}\right)^2=\pi \times 10^{-4} \mathrm{~m}^2$
$Y=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^2$
$\Rightarrow \quad \Delta l=\frac{80 \times 10^3 \times 1}{\pi \times 10^{-4} \times 2 \times 10^{11}} \mathrm{~m}$
$=\frac{8 \times 10^8}{\pi \times 2 \times 10^{11}} \mathrm{~m}=\frac{4}{\pi} \times 10^{-3} \mathrm{~m}$
$\Rightarrow \quad \Delta l=\frac{4}{\pi} \mathrm{mm}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.