Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A stone is projected at angle ' $\theta$ ' with velocity ' $u$ '. If it executes nearly a circular motion at its maximum point for short time, the radius of the circular path will be ( $\mathrm{g}=$ acceleration due to gravity)
PhysicsMotion In Two DimensionsMHT CETMHT CET 2023 (13 May Shift 2)
Options:
  • A $\frac{\mathrm{u}^2}{\mathrm{~g}}$
  • B $\frac{\mathrm{u}^2 \cos ^2 \theta}{\mathrm{g}}$
  • C $\frac{\mathrm{u}^2 \sin ^2 \theta}{\mathrm{g}}$
  • D $\frac{\mathrm{u}^2 \cos ^2 \theta}{2 \mathrm{~g}}$
Solution:
1885 Upvotes Verified Answer
The correct answer is: $\frac{\mathrm{u}^2 \cos ^2 \theta}{\mathrm{g}}$
Horizontal velocity at highest point:
$\mathrm{v}_{\mathrm{x}}=\mathrm{u}_{\mathrm{x}}=\mathrm{u} \cos \theta$
$\mathrm{a}=\frac{\mathrm{v}_{\mathrm{x}}{ }^2}{\mathrm{R}}$
$a=g$
$\therefore \quad \mathrm{R}=\frac{\mathrm{v}_{\mathrm{x}}{ }^2}{\mathrm{~g}}=\frac{(\mathrm{u} \cos \theta)^2}{\mathrm{~g}}=\frac{\mathrm{u}^2 \cos ^2 \theta}{\mathrm{g}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.