Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A stone projected with a velocity a at an angle $\theta$ with the horizontal reaches maximum height $\mathrm{H}_{1}$. When it is projected with velocity u at an angle $\left(\frac{\pi}{2}-\theta\right)$ with the horizontal, it reaches maximum height $\mathrm{H}_{2}$. The relation between the horizontal range $\mathrm{R}$ of the projectile, heights $\mathrm{H}_{1}$ and $\mathrm{H}_{2}$ is
PhysicsMotion In Two DimensionsBITSATBITSAT 2016
Options:
  • A $\mathrm{R}=4 \sqrt{\mathrm{H}_{1} \mathrm{H}_{2}}$
  • B $\mathrm{R}=4\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right)$
  • C $\mathrm{R}=4\left(\mathrm{H}_{1}+\mathrm{H}_{2}\right)$
  • D $\mathrm{R}=\frac{\mathrm{H}_{1}^{2}}{\mathrm{H}_{2}^{2}}$
Solution:
1598 Upvotes Verified Answer
The correct answer is: $\mathrm{R}=4 \sqrt{\mathrm{H}_{1} \mathrm{H}_{2}}$
$\begin{aligned} & \mathrm{H}_{1}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}} \\ \text { and } \mathrm{H}_{2}=\frac{\mathrm{u}^{2} \sin ^{2}\left(90^{\circ}-\theta\right)}{2 \mathrm{~g}}=\frac{\mathrm{u}^{2} \cos ^{2} \theta}{2 \mathrm{~g}} \\ \mathrm{H}_{1} \mathrm{H}_{2}=& \frac{u^{2} \sin ^{2} \theta}{2 \mathrm{~g}} \times \frac{u^{2} \cos ^{2} \theta}{2 \mathrm{~g}}=\frac{\left(u^{2} \sin 2 \theta\right)^{2}}{16 g^{2}}=\frac{R^{2}}{16} \\ \therefore R=4 \sqrt{H_{1} H_{2}} \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.