Search any question & find its solution
Question:
Answered & Verified by Expert
A straight line through the origin $\mathrm{O}$ meets the parallel lines $4 \mathrm{x}+2 \mathrm{y}=9$ and $2 \mathrm{x}+\mathrm{y}+6=0$ at $\mathrm{P}$ and $\mathrm{Q}$ respectively. The point O divides the segment $\mathrm{PQ}$ in the ratio
Options:
Solution:
2186 Upvotes
Verified Answer
The correct answer is:
$3: 4$
Hint :
$\Rightarrow \frac{\mathrm{OP}}{\mathrm{OQ}}=\frac{\mathrm{OM}}{\mathrm{ON}}=\Rightarrow \frac{9 / 2}{12 / 2}=\frac{3}{4}$

$\Rightarrow \frac{\mathrm{OP}}{\mathrm{OQ}}=\frac{\mathrm{OM}}{\mathrm{ON}}=\Rightarrow \frac{9 / 2}{12 / 2}=\frac{3}{4}$

Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.