Search any question & find its solution
Question:
Answered & Verified by Expert
A string of $7 \mathrm{~m}$ length has a mass of $0.035 \mathrm{~kg}$. If tension in the string is $60.5 \mathrm{~N}$, then speed of a wave on the string is
Options:
Solution:
1449 Upvotes
Verified Answer
The correct answer is:
$110 \mathrm{~m} / \mathrm{s}$
Given : Length $(l)=7 \mathrm{~m}$
$\operatorname{Mass}(\mathrm{M})=0.035 \mathrm{~kg}$ and tension $(\mathrm{T})=60.5$
$\mathrm{N}$. We know that mass of string per unit length $(\mathrm{m})$
$$
=\frac{0.035}{7}=0.005 \mathrm{~kg} / \mathrm{m}
$$
and speed of
$$
\text { wave }=\sqrt{\frac{T}{m}}=\sqrt{\frac{60.5}{0.005}}=110 \mathrm{~m} / \mathrm{s} .
$$
$\operatorname{Mass}(\mathrm{M})=0.035 \mathrm{~kg}$ and tension $(\mathrm{T})=60.5$
$\mathrm{N}$. We know that mass of string per unit length $(\mathrm{m})$
$$
=\frac{0.035}{7}=0.005 \mathrm{~kg} / \mathrm{m}
$$
and speed of
$$
\text { wave }=\sqrt{\frac{T}{m}}=\sqrt{\frac{60.5}{0.005}}=110 \mathrm{~m} / \mathrm{s} .
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.