Search any question & find its solution
Question:
Answered & Verified by Expert
A tension of $22 \mathrm{~N}$ is applied to a copper wire of cross-sectional area $0.02 \mathrm{~cm}^2$ Young's modulus of copper is $1.1 \times 10^{11} \mathrm{~N} / \mathrm{m}^2$ and Poisson's ratio 0.32 . The decrease in cross-sectional area will be
Options:
Solution:
1411 Upvotes
Verified Answer
The correct answer is:
$0.64 \times 10^{-6} \mathrm{~cm}^2$
Young's modulus of materials
$Y=\frac{F \times l}{A \Delta l}, \frac{\Delta l}{l}=\frac{F}{A Y}$
$=\frac{22}{0.02 \times 10^{-4} \times 1.1 \times 10^{11}}=10^{-4}$
Poisson's ratio,
$\sigma=\frac{\frac{\Delta l}{l}}{\frac{\Delta r}{r}}$
$\begin{aligned} \frac{\Delta l}{l} & =\sigma \frac{\Delta r}{r}=0.32 \times \frac{\Delta r}{r} \\ & =0.32 \times 10^{-4}=32 \times 10^{-6}\end{aligned}$
The decrease in cross-sectional area,
$\begin{aligned} & \frac{\Delta A}{A}=\frac{\Delta A}{0.02}=0.32 \times \frac{\Delta l}{l} \\ & \Delta A=0.64 \times 10^{-6} \mathrm{~cm}^2\end{aligned}$
$Y=\frac{F \times l}{A \Delta l}, \frac{\Delta l}{l}=\frac{F}{A Y}$
$=\frac{22}{0.02 \times 10^{-4} \times 1.1 \times 10^{11}}=10^{-4}$
Poisson's ratio,
$\sigma=\frac{\frac{\Delta l}{l}}{\frac{\Delta r}{r}}$
$\begin{aligned} \frac{\Delta l}{l} & =\sigma \frac{\Delta r}{r}=0.32 \times \frac{\Delta r}{r} \\ & =0.32 \times 10^{-4}=32 \times 10^{-6}\end{aligned}$
The decrease in cross-sectional area,
$\begin{aligned} & \frac{\Delta A}{A}=\frac{\Delta A}{0.02}=0.32 \times \frac{\Delta l}{l} \\ & \Delta A=0.64 \times 10^{-6} \mathrm{~cm}^2\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.