Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A thin rod of length 41 and mass $4 \mathrm{~m}$ is bent at the points as shown in figure. What is the moment of inertia of the rod about the axis passes through point $\mathrm{O}$ and perpendicular to the plane of paper?

PhysicsRotational MotionBITSATBITSAT 2015
Options:
  • A $\frac{\mathrm{M} l^{2}}{3}$
  • B $\frac{10 \mathrm{M} l^{2}}{3}$
  • C $\frac{\mathrm{M} l^{2}}{12}$
  • D $\frac{\mathrm{M} l^{2}}{24}$
Solution:
2569 Upvotes Verified Answer
The correct answer is: $\frac{10 \mathrm{M} l^{2}}{3}$
Total moment of inertia

$$

=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}+\mathrm{I}_{4}=2 \mathrm{I}_{1}+2 \mathrm{I}_{2}

$$

$$

\begin{array}{l}

=2\left(l_{1}+l_{2}\right)\left\lceil I_{3}=I_{1}, I_{1}=I_{4}\right] \\

\text { Now, } I_{2}=I_{3}=\frac{M I^{2}}{3}

\end{array}

$$

Using parallel axes theorem, we have

$$

\begin{array}{l}

\mathrm{I}=\mathrm{I}_{\mathrm{CM}}+\mathrm{Mx}^{2} \text { and } \mathrm{x}=\sqrt{l^{2}+\frac{l^{2}}{4}} \\

\mathrm{I}_{1}=\mathrm{I}_{4}=\frac{\mathrm{M} l^{2}}{12}+\mathrm{M}\left[\sqrt{l^{2}+\left(\frac{l}{2}\right)^{2}}\right]^{2}

\end{array}

$$

Putting all values we get Moment of inertia, $\mathrm{I}=10\left(\frac{\mathrm{Ml}^{2}}{3}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.