Search any question & find its solution
Question:
Answered & Verified by Expert
A thin spherical conducting shell of radius $\mathrm{R}$ has a charge $\mathrm{q}$. Another charge $\mathrm{Q}$ is placed at the centre of the shell. The electrostatic potential at a point $\mathrm{P}$ a distance $\frac{\mathrm{R}}{2}$ from the centre of the shell is
Options:
Solution:
2391 Upvotes
Verified Answer
The correct answer is:
$\frac{2 Q}{4 \pi \varepsilon_0 R}+\frac{q}{4 \pi \varepsilon_0 R}$
$\frac{2 Q}{4 \pi \varepsilon_0 R}+\frac{q}{4 \pi \varepsilon_0 R}$
Potential due to spherical shell, $\mathrm{v}_1=\frac{\mathrm{q}}{4 \pi \varepsilon_0 \mathrm{R}}$. Potential difference due to charge at the centre
$\mathrm{V}_2=\frac{2 \mathrm{Q}}{4 \pi \varepsilon_0 r} ; \mathrm{V}=\mathrm{V}_1+\mathrm{V}_2=\frac{2 \mathrm{Q}}{4 \pi \varepsilon_0 \mathrm{R}}+\frac{\mathrm{q}}{4 \pi \varepsilon_0 \mathrm{R}}$
$\mathrm{V}_2=\frac{2 \mathrm{Q}}{4 \pi \varepsilon_0 r} ; \mathrm{V}=\mathrm{V}_1+\mathrm{V}_2=\frac{2 \mathrm{Q}}{4 \pi \varepsilon_0 \mathrm{R}}+\frac{\mathrm{q}}{4 \pi \varepsilon_0 \mathrm{R}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.