Search any question & find its solution
Question:
Answered & Verified by Expert
A thin uniform rod has mass 'M' and length 'L'. The moment of inertia about an axis perpendicular to it and passing through the point at a distance $\frac{\mathrm{L}}{3}$ from one of its ends, will be
Options:
Solution:
1565 Upvotes
Verified Answer
The correct answer is:
$\frac{\mathrm{ML}^{2}}{9}$
(B)
$\begin{aligned} \mathrm{I} &=\mathrm{I}_{0}+\mathrm{Mh}^{2} \\ \mathrm{~h} &=\frac{\mathrm{L}}{2}-\frac{\mathrm{L}}{3}=\frac{\mathrm{L}}{6} \\ \mathrm{I} &=\frac{\mathrm{ML}^{2}}{12}+\mathrm{Mh}^{2} \\ &=\frac{\mathrm{ML}^{2}}{12}+\frac{\mathrm{ML}^{2}}{36} \\ &=\frac{4 \mathrm{ML}^{2}}{36}=\frac{\mathrm{ML}^{2}}{9} \end{aligned}$

$\begin{aligned} \mathrm{I} &=\mathrm{I}_{0}+\mathrm{Mh}^{2} \\ \mathrm{~h} &=\frac{\mathrm{L}}{2}-\frac{\mathrm{L}}{3}=\frac{\mathrm{L}}{6} \\ \mathrm{I} &=\frac{\mathrm{ML}^{2}}{12}+\mathrm{Mh}^{2} \\ &=\frac{\mathrm{ML}^{2}}{12}+\frac{\mathrm{ML}^{2}}{36} \\ &=\frac{4 \mathrm{ML}^{2}}{36}=\frac{\mathrm{ML}^{2}}{9} \end{aligned}$

Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.