Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A true statement among the following identities is
MathematicsTrigonometric EquationsAP EAMCETAP EAMCET 2022 (05 Jul Shift 2)
Options:
  • A $\cos 5 \theta=16 \cos ^5 \theta-20 \cos ^3 \theta-5 \cos \theta$
  • B $\cos 5 \theta=20 \cos ^3 \theta-16 \cos ^5 \theta+5 \cos \theta$
  • C $\cos 5 \theta=16 \cos ^5 \theta+20 \cos ^3 \theta-5 \cos \theta$
  • D $\cos 5 \theta=16 \cos ^5 \theta-20 \cos ^3 \theta+5 \cos \theta$
Solution:
1163 Upvotes Verified Answer
The correct answer is: $\cos 5 \theta=16 \cos ^5 \theta-20 \cos ^3 \theta+5 \cos \theta$
$\cos 5 \theta=\cos (4 \theta+\theta)$
$\begin{aligned} & =\cos 4 \theta \cdot \cos \theta-\sin 4 \theta \sin \theta \\ & =\left(2 \cos ^2 2 \theta-1\right) \cos \theta-2 \sin 2 \theta \cos 2 \theta \sin \theta \\ & =\left\{2\left(2 \cos ^2 \theta-1\right)^2-1\right\} \cos \theta-4 \sin ^2 \theta \cos \theta \cos 2 \theta\end{aligned}$
$\begin{array}{r}=\left(8 \cos ^4 \theta+1-8 \cos ^2 \theta\right) \cos \theta-4\left(1-\cos ^2 \theta\right) \cos \theta \\ \left(2 \cos ^2 \theta-1\right)\end{array}$
$\begin{aligned} & =\left(8 \cos ^4 \theta+1-8 \cos ^2 \theta\right) \cos \theta-4 \cos \theta\left(3 \cos ^2 \theta-1-2 \cos ^4 \theta\right) \\ & =8 \cos ^5 \theta+\cos \theta-8 \cos ^3 \theta-12 \cos ^3 \theta+4 \cos \theta+8 \cos ^5 \theta \\ & =16 \cos ^5 \theta-20 \cos ^3 \theta+5 \cos \theta\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.