Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A uniform metallic wire is elongated by $0.04 \mathrm{~m}$ when subjected to a linear force $\mathrm{F}$. The elongation, if its length and diameter is doubled and subjected to the same force will be $\qquad$ $\mathrm{cm}$.
PhysicsMechanical Properties of SolidsJEE Main
Options:
  • A $1 \mathrm{~cm}$
  • B $2 \mathrm{~cm}$
  • C $4 \mathrm{~cm}$
  • D $8 \mathrm{~cm}$
Solution:
1795 Upvotes Verified Answer
The correct answer is: $2 \mathrm{~cm}$



$\begin{aligned} & \mathrm{F}=\mathrm{Y} . \mathrm{A} \cdot \frac{\Delta \ell}{\ell} \\ & \Delta \ell=\frac{\mathrm{F}}{\text { Y.A. }} . \ell \\ & \Delta \ell=\frac{\mathrm{F} \cdot \ell}{\mathrm{Y} . \pi \mathrm{r}^2} \\ & \Delta \ell \propto \frac{\ell}{\mathrm{r}^2} \\ & \frac{\Delta \ell_2}{\Delta \ell_1}=\left(\frac{\ell_2}{\ell_1}\right)\left(\frac{\mathrm{r}_1}{\mathrm{r}_2}\right)^2=\text { (2) }\left(\frac{1}{2}\right)^2 \\ & \frac{\Delta \ell_2}{\Delta \ell_1}=\frac{1}{2} \\ & \Delta \ell_2=\frac{\Delta \ell_1}{2} \\ & =\frac{0.04}{2}=0.02 \mathrm{~m} \\ & \end{aligned}$
$\Delta \ell_2=2 \mathrm{~cm}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.